Table - 7: Common Course Structure for PG DegreeProgramme in Science – M.C.A(With effect from the academic year 2017-2018 onwards)

Sem.	Sub. No.	Subject Status	Subject Title	Contact Hrs./ Week	Credits
(1)	(2)	(3)		(5)	(6)
	1	Core - 1	MFCS-I	5	4
	2	Core - 2	Programming in C	5	4
	3	Core - 3	Computer system Architecture	4	4
	4	Core - 4	Fundamentals of Information Technology	4	4
Ι	5	Core - 5	Web Technology	4	4
	6	Core - 6 Practical - 1	Programming in C Lab	4	2
	7	Core - 7 Practical - 2	MS office and Internet Programming Lab	4	2
			Subtotal	30	24
	8	Core - 8	MFCS-II	5	4
	9	Core - 9	Object Oriented programming Using C++	5	4
	10	Core - 10	Data Structures and algorithms using C++	4	4
II	11	Core - 11	Operating Systems	4	4
	12	Core - 12	Software Engineering	4	4
	13	Core - 13 Practical - 3	Object Oriented Programming using C++ Lab	4	2
	14	Core - 14 Practical - 4	Data Structures and algorithms using C++ Lab	4	2
			Subtotal	30	24

Sem.	Sub. No.	Subject Status	Subject Title	Contact Hrs./ Week	Credits
(1)	(2)	(3)	(4)	(5)	(6)
	15	Core - 15	Financial Management and Accounting	5	4
	16	Core - 16	Computer Graphics and Multimedia	5	4
	17	Core - 17	Advanced Java Programming	4	4
ш	18	Core - 18	Object Oriented Analysis Design using UML	4	4
III	19	Core - 19	Microprocessor and its Applications	4	4
	20	Core - 20 Practical - 5	Graphics and Multimedia Lab	4	2
	21	Core - 21 Practical – 6	Advanced Java Programming Lab	4	2
	•		Subtotal	30	24
	22	Core - 22	Open Source Technology	5	4
	23	Core - 23	RDBMS	5	4
	24	Core - 24	Mobile computing	4	4
	25	Core - 25	Principles of Complier Design	4	4
IV	26	Elective - 1		4	3
	27	Core - 26 Practical - 7	Open Source Technology Lab	4	2
	28	Core - 27 Practical - 8	RDBMS Lab	4	2
			Subtotal	30	23

Sem.	Sub. No.	Subject status	Subject Title		Contact Hrs./ Week	Credits
(1)	(2)	(3)	(4)		(5)	(6)
	29	Core - 28	.NET Programming		4	4
	30	Core - 29	Cloud Computing		4	4
	31	Core - 30	Data Communication & Networks		4	4
	32	Core - 31	Research Methodology		4	4
V	33	Core - 32	E-Commerce		4	4
	34	Elective - 2			3	3
	35	Core - 33	Mini Project		7+5*	6
			Sul	btotal	30	29
VI	36	Core - 34	Major Project		30+2*	16
			Sul	btotal	30	16
	•			Total	180	140

* Extra hours for Project

For the Project, flexible credits are $b/w 5 - 8 \&$						
Hours per week are b/w 10 - 16						
Total number of credits ≥ 90	:	140				
Total number of Core Courses	:	34 (24 T + 8 P + 2 Prj.)				
Total number of Elective Courses	:	2				
Total hours	:	180				

1.ELECTIVE 1: (IV Semester) - Select any one

- 1. Data Mining
- 2. Professional Ethics
- 3. Soft Computing
- 4. Bio Metrics
- 5. Theory of computation

2.ELECTIVE 2: (V Semester) - Select any one

- 1. Digital Image Processing
- 2. Embedded Systems
- 3. Security in Computing
- 4. Big Data Analytics

SEMESTER – I CORE SUBJECT – 1 MFCS-1

LTPC

4 0 0 4

UNIT - I

Logic – Statement – Proposition and its types Negation, Disjunction, Conjunction and connectives – Truth Table construction – Tautology and contradictions – biconditional propositions – Logical equivalence – Logical implications – Principle disjunctive and conjunctive normal forms.

14

UNIT – II

Set theory and relations: Basic operations on sets – power set – Properties of set operations – Properties of subsets – Basic set identities – Functions – Inverse functions – composition of functions – Relations on sets – properties of relations – Equivalence relations. 11

UNIT – III

Algebraic structures : Algebraic systems – Properties – Semi Groups – Monoids
– Homomorphisms – Cosets – Largrang's theorem.
12

$\mathbf{UNIT} - \mathbf{IV}$

Matrices, Rank of Matrices, solving system of equations-Eigen values and Eigen vectors- Inverse of a matrix- Caylay Hamilton Theorem. 13

UNIT – V

Graph theory: Definition – Connectedness – path – cycle – components – Matrix representation of graphs – Trees and basic properties – Rooted and binary trees – spanning trees. **10**

TOTAL: 60 PERIODS

- 1 J.P. Tremblay and R. Manokar, Discrete Mathematical Structures with Applications to computer science, Tata McGraw Hill Publications.
- 2 N. Candrasekaran & M. Umaparvathi, Discrete Mathematics PHI, 2010
- 3 NarasinghDeo, Graph Theory and its Applications. Tata McGraw Hill Publications.

- 4 Kenneth H. Rosen, Discrete Mathematics and its Applications. Tata McGraw Hill Publications.
- 5 Brikhoff and Barte, Modern Applied Algebra, John Wiley Ltd.

CORE SUBJECT - 2 PROGRAMMING IN C

LTPC

4 0 0 4

UNIT – I INTRODUCTION TO COMPUTER PROBLEM SOLVING

Introduction – The problem Solving aspect – Top down design – Implementation of algorithm – Program Verification – The efficiency of algorithm – The analysis of algorithm. 14

UNIT – II - PROGRAMMING, ALGORITHMS AND FLOWCHARTS

Programs and Programming – building blocks for simple programs – Programming life cycle phases – pseudo code representation – flow charts – Algorithm – Programming Languages – compiler – Interpreter, Loader and Linker – Program execution – Classification of Programming Language – Structured Programming Concept.

11

UNIT - III - BASICS OF 'C' INPUT/OUTPUT & CONTROL STATEMENTS

Introduction – Identifier – keywords – variables – constants – I/O statements – Operators – Initialization – Expressions – Expression Evaluation – L Values and R Values – Type Conversion in C – Formatted input and output functions – Specifying Test Condition for Selection and Iteration – Conditional Execution – and Selection – Iteration and Repetitive Execution – go to Statement – Nested Loops – Continue and break Statements.

12

UNIT - IV - ARRAYS, STRINGS, FUNCTIONS AND POINTERS

Array – One dimensional Character Arrays – Multidimensional Arrays – Arrays of Strings – Two dimensional character array – functions – parameter passing mechanism scope – storage classes – recursion – comparing iteration and recursion – pointer – pointer operators – uses of pointers – arrays and pointers – pointers and strings – pointer indirection – pointers to functions – Dynamic memory allocation.

13

UNIT - V - USER –DEFINED DATA TYPES AND FILES

Structures – initialization – nested structures – structures and arrays – structures and pointers – union – type def and enumeration types – bit fields – File

Management in C – Files and Streams – File handling functions – Sequential access file – Random access file – Command line arguments. 10

TOTAL: 60 PERIODS

- 1 How to solve it by computer, R.G. Dromey, Pearson education, fifth edition, 2007.
- 2 PradipDey, ManasGhosh, "Fundamentals of Computing and Programming in C", First Edition, Oxford University Press, 2009.
- 3 Kamthane, A.N., "Programming with ANSI and Trubo C", Pearson Education, Delhi, 2006.
- 4 Deitel and Deitel, "C How to Program", Pearson Education 2010, 6th Edition.
- 5 Brain W. Kernighan and Dennis M.Ritchie, "The C Programming Language", 2006, Prentice Hall.
- 6 YashavantKanetkar, "Understanding Pointer in C" 4th Revised and Updated Edition, 2008, BpbPublications.
- 7 Cormen, Leiserson, Rivest, Stein, "Introduction to Algorithms", MCGraw Hill, Publishers, 2002.
- 8 *ReemaThareja, "Programming in C", Oxford University Press, 2011.*

COMPUTER SYSTEM ARCHITECTURE

LTPC

4 0 0 4

UNIT – I - NUMBER SYSTEMS

Binary, Decimal, Octal and Hexadecimal – Conversion from one to another – Complements – Binary Codes.Basic Logic Gates – Basic Theorems and Properties of Boolean algebra NANO, NOR – Implementation – Sum of products – product of Sums – Karnaugh map – Tabulation Method – Don't Care Conditions.

14

UNIT – II - COMBINATIONAL LOGIC CIRCUITS DESIGN

Multiplexers – Demultiplexers – Decoders – Encoders – Half Adder – Full Adder – Subtractor – Parallel Adders.Flip – Flops : RS, D, JK Flip-flops – Registers – Shift Registers – Ripple Counters – Synchronous counters. 11

UNIT – III - REGISTER TRANSFER AND MICRO OPERATIONS

Arithmetic circuits – Logic Circuit – Shift Circuits – Arithmetic Logic shift unit – Stack organization – Instruction formats – Addressing modes – Data transfer, Manipulation and program control instructions. 12

UNIT - IV - INPUT - OUTPUT ORGANIZATION

Peripheral Devices – Input – Output Interface Asynchronous Data Transfer (Strobe & Handshaking Method) – Methods of Transfer – Priority interrupt – DMA – IOP. 13

UNIT - V - MEMORY ORGANIZATION

Memory Hierarchy – Main memory – Auxiliary memory – Associative memory – Cache Memory – Virtual memory. 10

TOTAL: 60 PERIODS

- 1 Morris Mano, "Digital Logic and Computer Design", PHI.
- 2 Morris Mano, "Computer System Architecture", Third Edition, Pearson education.
- 3 Albert Paul Malvino, Donald P. Leach, "Digital Principles and applications", Tata MC Graw Hill Pub., Company Ltd.
- 4 V. Rajaraman & T. Radhakrishnan Computer Organization & Architecture FHI New Delhi, 2009.
- 5 Ananda Natarajan-Digital Design, PHI Learning P LTD, Delhi. 2015

CORE SUBJECT – 4 FUNDAMENTALS OF INFORMATION L T P C

TECHNOLOGY

4 0 0 4

UNIT I - COMPUTER BASICS

Algorithms – A simple Model of a Computer – Characteristics of Computers – Problem Solving using Computers.

Input/ Output Units: Description of Computer Input Units - Other Input Methods – Computer Output Units.

Computer Generations and Classification : First Generation of Computers – The Second Generation – The Third Generation – The Fourth Generation – The Fifth Generation – Moore's Law – Classification of Computers – Distributed Computer System – Parallel Computers. 14

UNIT II - COMPUTER MEMORY

Memory Cell – Memory Organization – Read Only Memory – Serial Access Memory – Physical Devices Used to Construct Memories – Magnetic Hard Disk – Floppy Disk Drives – Compact Disk Read Only Memory – Magnetic Tape Drive. **Programming Languages:** Why Programming Language – Assembly language – Higher Level Programming Languages – Compiling High Level Language program – Some High Level Languages. **11**

UNIT III - MICROCOMPUTERS

An Ideal Microcomputer – An Actual Microcomputer – Memory Systems for Microcomputers – A Minimum Microcomputer configuration – Evolution of Microcomputers – Special Purpose Microprocessors – Special Purpose Microcomputer Software – Special Purpose Applications of Microcomputers – Smart Cards and RFID.

The Computer System Hardware : Introduction – Central Processing Unit –Memory Unit – Instruction Format – Instruction Set – Instruction Cycle –Microprocessor – Interconnecting the Units of a Computer – Performance of aComputer – Inside a Computer Cabinet.12

UNIT IV - INTERACTION OF USER AND COMPUTER

Introduction – Types of Software – System Software – Application Software – Software Acquisition.

Computer Programming Fundamentals: Introduction – Program Development Life Cycle – Algorithm – Control Structures – Flowchart – Pseudo Code – Programming Paradigms. 13

UNIT V - INFORMATION SYSTEMS

Introduction – Data, Information and Knowledge – Characteristics of Information – Information system – Computer-Based Information System – Need for Efficient Information System – Categories of Information System – Operations Support System – Management Support System – Specialized Information system – Careers in Information Systems. **Emerging Computing Environments:** Current Computing Scenario – Peer to Peer Computing – Grid Computing – Cloud Computing – Utility computing. **10**

TOTAL: 60 PERIODS

- 1 Fundamentals of Computers by V.Rajaraman, Fifth Edition, 2011. PHI Learning Private Limited.
- 2 Computer Fundamentals by Anita Goel, 2010. Pearson.

WEB TECHNOLOGY

L T P C 4 0 0 4

UNIT-I

Internet : History and evolution of Internet -Internet & intranet –Internet Servicesand Accessibility-Uses of the Internet-Protocols-Web Concepts-Data retrievalfromtheweb-WebBrowsing-InternetStandards.14

UNIT-II

Internet Security & HTML: Overview of internet security- access securitytransaction security- security zones-digital IDS-Introduction to firewalls-web page design : static and dynamic web pages-introduction to HTML-HTML elements and tags- formatting with HTML tags- physical, logical HTML styles setting fonts -colors and headings-displaying Plain. 11

UNIT-III

ADVANCE HTML: Working with images-links and lists -creating tables.working with frames-creating horizontal, vertical frames, named frames-opening new browser window-creating html forms-Adding controls on forms, submitting data from forms- working with multimedia- multimedia sound- video-3D,Using multimedia files-Style sheets: types, creating and, using style sheets. **12**

UNIT-IV

Java script & XML: introduction to client and server side scripting- introduction to Java script-data types-operators-conditional statement- loops in Java script, functions- arrays, objects and elements in Java script- form validation using Java script- Introduction to XML- Creating XML documents-specifying attributes in DTDs- accessing XML data with XML Data Island- documents- Handling events while loading XML documents. 13

UNIT-V

Servlets: advantages of Servlets over CGI-The Servlrt Life Cycle- Handling HTTP GET and POST Requests- JAVA SERVER PAGES: Advantages of JSP-Components of JSP.ACTIVE SERVER PAGES: Advantages of using ASP-ASP Cookies-ASP objects. 10

TOTAL: 60 PERIODS

Textbook:

1. Web Technology : A Developer's Perspective ,N.P.Gopalan and J.Akilandeswari, PHI Learning, 2014

Reference Books:

1. Web Technology and Design, C Xavier, New Age International

PRACTICAL - 1

PROGRAMMING IN C LAB

LTPC

(PROGRAMS INCLUDE BUT NOT LIMITED TO)

- $0 \ 1 \ 4 \ 2$
- 1.Find the area of the Triangle
- 2.To Solve the possible roots of the quadratic equation
- 3.To arrange a List of numbers in Descending order
- 4.To Find Ncr Value using Functions
- 5.To Check given string is palindrome or not
- 6.To find Transpose of a Matrix
- 7.To Multiply two matrices
- 8.To Prepare a Mark list
- 9.To sort a List of names in alphabetical Order
- 10.To print a Pascal Triangle
- 11.File Program
- 12.Pointer Program
- 13.Fibonacci using Recursion
- 14.Program using preprocessor
- 15.Program using Arrays & Strings

PRACTICAL - 2

MS OFFICE AND INTERNET PROGRAMMING LAB

PROGRAMS INCLUDE BUT NOT LIMITED TO)

0 1 4 2

LTPC

MS – WORD:

- 1. Create an Invitation
- 2. Mail Merge

MS – EXCEL:

- 3 .Mark sheet preparation
- 4. Pay Roll
- 5. Sales detail

MS – ACCESS:

6. Mark List

- 7. Salary Data Base with Query
- 8. Create Student Database with suitable query

MS – POWER POINT:

9. Power Point Presentation

- 10. Create slide Show for student personality
- 11. Create Presentation with Animation

HTML:

- 12. Image and List
- 13. Time Table
- 14. Forms
- 15. Frames

JAVASCRIPT:

- 16 . Name and password
- 17. Date and time
- 18. Display the current day

SEMESTER – II CORE SUBJECT – 8 MFCS – II

LTPC

4004

UNIT- I

OR methodology – Modeling through OR methodology – History of OR – Linear Programming – Problem formulation – Graphical method – Simplex method – Big M Method. 14

UNIT-II

Transportation Problem – Formulation – Methods to find initial basic feasible solutions – North West corner rule – Least Cost Method – Penalty method – Modi method to find optional solution – Degeneracy – Unbalanced transportation. **11**

UNIT-III

Assignment problem: Formulation – Hungarian method – Unbalanced assignment problem Travelling salesman problem.

12

UNIT-IV

Game theory Two person – zero sum game – saddle points and value of the game – Games without saddle points – Mixed strategies – Algebraic method for 2×2 method to $2 \times n$ and $n \times 2$ game – method of domination. 13

UNIT- V

Roots of algebraic and transcendental equations: Bisection method – Newton Raphson Method – Numerical Interpolation - Newton formula – Lagrange's interpolation. 10

TOTAL: 60 PERIODS

- 1 KantiSwarup, Gupta, P.K. and Man Mohan, Operations Research, Sultan Chand & Sons.
- 2 Sundaresan, K.S. Ganapathy Subramanian, K. Ganeson, "Operations Research", A.R. Publications.
- 3 R. Panneerselvam Operations Research PHI, New Delhi, 2011.
- 4 S.S.Sastry, "Introductory Numerical Analysis" Prentice Hall of India (4th Edition)
- 5 M.K. Venkatraman, "Numerical Methods in Science and Engineering" National Publishing Company, 5th Edition.

CORE SUBJECT – 9 OBJECT ORIENTED PROGRAMMING USING C++

LTPC

4 0 0 4

UNIT- I

Principles of Object-oriented Programming: Software Evolution – A look at Procedure-Oriented Programming – Object-Oriented Programming Paradigm – Basic concepts of object-Oriented Programming – Benefits of OOP – Object-Oriented Languages- Applications of OOP

Beginning with C++: What is C++? – Applications of C++ - A simple C++ Program – More C++ statements – An example with Class- Structure of C++ Program – User Defined Data Types – Derived Data Types – Reference Variables – Operators in C++ - Scope Resolution Operator – Member De referencing Operators – Memory Management Operators – Manipulators – Type Cast Operators. **14**

UNIT-II

Functions in C++: Introduction – The Main Function – Function prototyping – Call by Reference – Return by reference – Inline Functions - Default Arguments – const Arguments – Function Overloading – Math Library Functions

Classes and Objects: Introduction - C Structure Revisited – Specifying a Class – Defining Member Function-A C++ Program with Class -Making an outside Function Inline –Nesting of Member Function – Private member functions-Arrays with in a class – Memory allocation for objects – Static Data Members – Static Member Functions, Arrays of objects – Objects as Function arguments – Friendly Functions – Returning Objects - const Member Functions – Pointers to Members – Local Classes. **11**

UNIT-III

Constructors and Destructors : Introduction – Constructors – Parameterized constructors – multiple constructors in a class – Constructors with Default arguments – Dynamic Initialization of Objects- Copy Constructors – Dynamic Constructors – Constructing two dimensional Arrays – const objects – Destructors.

Operator Overloading and Type Conversion:

Introduction – Defining Operator Overloading – Overloading unary operators – Overloading Binary Operators – Overloading binary operators using Friends – Manipulation of strings using operators – Rules for overloading operators – Type conversions. 12

UNIT-IV

Inheritance: Extending Classes: Introduction – Defining Derived Classes – Single inheritance – Making a Private Member Inheritable – Multilevel Inheritance – Multiple Inheritance – Hierarchical Inheritance – Hybrid Inheritance - Virtual Base Classes - Abstract Classes - Constructors in Derived Classes - Member Classes - Nesting of Classes

Pointers, Virtual Functions and Polymorphism: Introduction – pointers – pointers to objects – this Pointer- Pointers to Derived classes – Virtual Functions – Pure Virtual Functions. 13

UNIT- V

Managing Console I/O Operations: Introduction - C++ Streams – C++ Stream Classes – Unformatted I/O Operations – Formatted Console I/O Operation – Managing output with Manipulators

Working with Files : Introduction – Classes for File Stream Operators – Opening
and closing a File – Detecting end-of-file - More about open() File Modes _ File
Pointers and their Manipulators – Sequential Input and Output Operations =
Updating a File Random Access – Error Handling during File Operations –
Command –Line Arguments.10

TOTAL: 60 PERIODS

Reference Books:

1. Object Oriented Programming C++ Third Edition – E Balagurusamy, Tata McGraw-Hill Publishing Company Limited

2. Complete Reference C++ - Herbert Schildt, Fourth Edition, Tata McGraw-Hill Publishing Company Limited

3. Object Oriented Programming with ANSI and Turbo C++ - Ashok N. Kamthane, Pearson Edition

4. C++ How to Program – Deitel, Fifth Edition Prentice Hall of India

5. Programming with C++ - D.Ravichandran, Second Edition, Tata McGraw-Hill Publishing Company Limited.

CORE SUBJECT – 10 DATA STRUCTURE AND ALGORITHMS USING C++

LTPC

4 0 0 4

UNIT -I

Program performance: Introduction – Space Complexity – Time Complexity – Asymptotic Notations – Practical Complexities.

Arrays: One Dimensional Array – Multidimensional Arrays – Pointer Arrays, Linked Lists, Singly Linked List – Circular Linked List – Doubly Linked List, Application of Linked Lists (Polynomial Representation).

14

UNIT- II

Stacks: Representations of stack (Array and Linked List) – Operations on Stacks Applications of Stacks (Parenthesis matching, Tower of Hanoi).

Queues: Representations of Queues (Array and Linked List) – Circular Queues. **11**

UNIT-III

Trees: Basic Terminologies – Definition and Concepts (Binary Trees and Properties of Binary Tree) – Representation of Binary Tree (Linear, Linked representation, Physical Implementation of Binary Tree in Memory) – Operations on Binary Tree – Types of Binary Trees (Expression Tree & Binary Search Tree). **12**

UNIT -IV

Graphs: Graph Terminologies – Representation of Graphs – Graph search methods – Breadth first search, Depth first search – Application of Graph structures (Shortest Path Preterm Minimum Spanning Trees, Connected Graphs and components). 13

UNIT- V

Algorithm – Design Methods: The Greedy Method – Divide and Conquer Method – Dynamic Programming Back Tracking – Branch and bound Applications: The greedy method (container loading) Divide and conquer method (Merge Sort) – (0/1 Knapsack problem) Backtracking (Travelling Sales Person).

10

TOTAL: 60 PERIODS

- 1 Data Structures, Algorithms and Applications in C++, SartajSahni Universites press pvt. Ltd. 2005.
- 2 Classic Data Structures D.Samantha Prentice Hall of India Pvt. Ltd. 2011.
- 3 Data Structures with C++, Varsha H. Patil Oxford University Press, 2012.
- 4 Data Structures & Algorithm Analysis in C++ Mark Allen Weiss, Pearson Blussion 2002.

CORE SUBJECT – 11 OPERATING SYSTEMS

L T P C

4 0 0 4

UNIT I - INTRODUCTION

Introduction - Types of operating systems – operating systems structures – system components – operating systems services – System calls – Systems programs – Processes – process concept – process scheduling – operation on processes – cooperating processes – Inter process communications – CPU Scheduling – Scheduling criteria – Scheduling algorithms – Multiple – process Scheduling. 14

UNIT II - PROCESS SYNCHRONIZATION

Process Synchronization – Critical section problem – Semaphores – Classical problems of synchronization – critical regions – Monitors – Deadlock characterization – Deadlock handling – Deadlock Prevention – Deadlock avoidance – Deadlock Detection – Deadlock Recovery – Threads Multithreading Models.

11

UNIT III - MEMORY MANAGEMENT

Memory Management – Swapping – Contiguous Memory allocation – Paging – Segmentation – Virtual Memory – Demand Paging – Page Replacement – Thrashing. 12

UNIT IV - DISK SCHEDULING AND DISTRIBUTED SYSTEMS

Disk Structures – Disk Scheduling – File systems Interface – File concepts – Access methods – Directory Disk Structures – Disk Scheduling – File Systems structures – Directory Implementation – Allocation Methods – Free Space management – Distributed File systems – Naming and Transparency – Remote File Accesses – Stateful Versus Stateless Service – File replication. 13

UNIT V - CASE STUDIES

Linux System – design Principles – process management – File Systems – Windows Vista – Systems Structures – Process management – memory management – Android OS-Virtual machine OS. **10**

TOTAL: 60 PERIODS

- 1 Abraham Silberschalz Peter B Galvin, G. Gagne, "Operating Systems Concepts", Seventh Edition, Addision Wesley Publishing Co. 2010.
- 2 Andrew S. Tanenbaum, "Modern operating Systems", Third Edition, PHI Learning Pvt. Ltd., 2008.
- 3 William Stallings, "Operating Systems: Internals and Design Principles", Seventh Edition, Prentice Hall, 2011.

- 4 *H M Deital, P J Deital and D R Choffnes, "Operating Systems", 3rd Edition, Pearson Education, 2011.*
- 5 D M Dhamdhere, "Operating Systems : A Concept-based Approach", Second Edition, Tata McGraw-Hill Education, 2007.
- 6 NareshChauhan, "Principles of Operating Systems" OXFORD HIGHER EDUCATION 2014.
- 7 Pabitra Pal Choudhury, "Operating Systems" Eastern Economy Editions 2009.

CORE SUBJECT – 12 SOFTWARE ENGINEERING

LTPC

4004

UNIT-I

Introduction: Software Crisis, Software Processes & Characteristics, Software life cycle models, Waterfall, Prototype, Evolutionary and Spiral Models Software Requirements analysis & specifications: Requirement engineering, requirement elicitation techniques like FAST, QFD, Requirements analysis using DFD(with case studies), Data dictionaries & ER Diagrams, Requirements documentation, Nature of SRS, Characteristics & organization of SRS. **14**

UNIT-II

Software Project Management Concepts:Software Project Management-TheManagement spectrum, The People, The Problem, The Process, The Project.Software Project Planning: Size Estimation like lines of Code & Function Count,Cost Estimation Models, COCOMO, Risk Management.11

UNIT-III

Software Design: Cohesion & Coupling, Classification of Cohesiveness & Coupling, Layered arrangement of modules, Function Oriented Design, Object Oriented Design- Software Metrics: Software measurements: What & Why, Token Count, Halstead Software Science Measures, Design Metrics, Data Structure Metrics.

12

UNIT-IV

Software Metrics: Software measurements: What & Why, Token Count, Halstead Software Science Measures, Design Metrics, Data Structure Metrics. 13

UNIT-V

Software Testing: Code Review, Testing Process, Types of Testing, Functional Testing, Structural Testing, Test Activities, Unit Testing, Integration Testing and System Testing(Performance Testing and Error Seeding), Debugging Activities. Software Maintenance: Management of Maintenance, Maintenance Process, Reverse Engineering, Software Re-engineering, Configuration Management, Documentation.

10

TOTAL: 60 PERIODS

Textbook:

1. Software Engineering 4/e Rajib Mall, PHI Reference Books:

- 1. Software Engineering, Pressman, McGraw Hill
- 2. Software Engineering, K.L.James, PHI

CORE SUBJECT – 13 PRACTICAL - 3

OBJECT ORIENTED PROGRAMMING USING C++ LAB L T P C

0142

1. Finding the Volume of any three geometric figures using function Overloading

2.Exchange values between two class objects using friend functions

3.Define a class to represent a bank account

DATA MEMBERS:

- 1 Name of the Depositor
- 3. Type of Account

MEMBER FUNCTIONS

1 To assign initial values 3. To Deposit an amount

2. Account Name

4. Balance amount in the Bank

2 To withdraw an amount 4. To display name and balance

WRITE A MAIN PROGRAM TO TEST THE PROGRAM:

- 1. Find the minimum of two objects using friend function
- 2. Using Dynamic Constructors, concatenate two strings
- 3. Using class and objects, find the sum of two matrices using pointers
- 4. Overload unary minus operator to change the sign of given vectors (3 elements)
- 5. Overload Binary + Operator to add two complex numbers
- 6. Add two vector objects. Use >> and << overloading
- 7. Process student Mark List using multilevel inheritance
- 8. Using Hierarchical inheritance process employee details
- 9. Print the Inventory Report of a book shop using objects and file
- 10. Write a Program using virtual base class
- 11. Write a Program using Template class with stack
- 12. Write a Program using files

CORE SUBJECT – 14 PRACTICAL - 4

DATA STRUCTURES & ALGORITHMS USING C++ LAB

LTPC

0142

- 1. Stack Implementation
- 2. Queue Implementation
- 3. Binary Search
- 4. Quick Sort
- 5. Strassen's matrix multiplication
- 6. Minimum Spanning Tree using Prim's Algorithm
- 7. All pair's shortest path
- 8. N Queen Problem
- 9. Breadth First Search
- 10. Depth First Search
- 11. Travelling Sales Person Problem
- 12. Merge Sort
- 13. 0/1 Knapsort problem
- 14. Travelling Sales Person Problem
- 15. Linked List
- 16. Tree Traversal